场景图 - Metal 纹理导入
展示如何使用使用 Metal 直接创建的纹理。
Metal 纹理导入示例展示了如何在一个 Qt Quick 场景中使用和导入一个 MTLTexture。当需要集成原生 Metal 渲染时,这为“底层”或“叠加”方法提供了一个替代方案。在许多情况下,在纹理上操作,并因此首先将 3D 内容“展平”,是将自定义 3D 内容与 Qt Quick 提供的 2D UI 元素集成和混合的最佳选项。
import MetalTextureImport CustomTextureItem { id: renderer anchors.fill: parent anchors.margins: 10 SequentialAnimation on t { NumberAnimation { to: 1; duration: 2500; easing.type: Easing.InQuad } NumberAnimation { to: 0; duration: 2500; easing.type: Easing.OutQuad } loops: Animation.Infinite running: true }
应用程序通过名为 CustomTextureItem 的自定义 QQuickItem 子类暴露,这在 QML 中进行实例化。属性值 t
同样是动态变化的。
class CustomTextureItem : public QQuickItem { Q_OBJECT Q_PROPERTY(qreal t READ t WRITE setT NOTIFY tChanged) QML_ELEMENT public: CustomTextureItem(); qreal t() const { return m_t; } void setT(qreal t); signals: void tChanged(); protected: QSGNode *updatePaintNode(QSGNode *, UpdatePaintNodeData *) override; void geometryChange(const QRectF &newGeometry, const QRectF &oldGeometry) override; private slots: void invalidateSceneGraph(); private: void releaseResources() override; CustomTextureNode *m_node = nullptr; qreal m_t = 0; };
我们自定义项目实现中涉及了对 QQuickItem::updatePaintNode() 以及与几何变化和清理相关的函数和槽进行重写。
class CustomTextureNode : public QSGTextureProvider, public QSGSimpleTextureNode { Q_OBJECT public: CustomTextureNode(QQuickItem *item); ~CustomTextureNode(); QSGTexture *texture() const override; void sync();
我们还需要一个场景图节点。我们不仅可以从 QSGNode 直接派生,还可以使用 QSGSimpleTextureNode,它为我们提供了一些预实现的便利功能。
QSGNode *CustomTextureItem::updatePaintNode(QSGNode *node, UpdatePaintNodeData *) { CustomTextureNode *n = static_cast<CustomTextureNode *>(node); if (!n && (width() <= 0 || height() <= 0)) return nullptr; if (!n) { m_node = new CustomTextureNode(this); n = m_node; } m_node->sync(); n->setTextureCoordinatesTransform(QSGSimpleTextureNode::NoTransform); n->setFiltering(QSGTexture::Linear); n->setRect(0, 0, width(), height()); window()->update(); // ensure getting to beforeRendering() at some point return n; }
项目的 updatePaintNode() 函数在渲染线程(如果有)上被调用,此时主(GUI)线程被阻塞。在这里,如果还未创建,我们会创建一个新的节点并更新它。访问 QA 快速对象是安全的,所以 sync() 会计算并从 QQuickItem 或 QQuickWindow 复制它所需要的值。
CustomTextureNode::CustomTextureNode(QQuickItem *item) : m_item(item) { m_window = m_item->window(); connect(m_window, &QQuickWindow::beforeRendering, this, &CustomTextureNode::render); connect(m_window, &QQuickWindow::screenChanged, this, [this]() { if (m_window->effectiveDevicePixelRatio() != m_dpr) m_item->update(); });
该节点并不完全依赖于典型的 QQuickItem - QSGNode 更新序列,它还连接到 QQuickWindow::beforeRendering()。就在那里,Metal 纹理的内容将通过在 Qt Quick 场景的命令缓冲区中编码一个完整的渲染过程,针对纹理进行更新。在编码开始之前,beforeRendering() 是放置的好地方。在本示例中,选择 QQuickWindow::beforeRenderPassRecording() 将是错误的。
void CustomTextureNode::sync() { m_dpr = m_window->effectiveDevicePixelRatio(); const QSize newSize = m_window->size() * m_dpr; bool needsNew = false; if (!texture()) needsNew = true; if (newSize != m_size) { needsNew = true; m_size = newSize; } if (needsNew) { delete texture(); [m_texture release]; QSGRendererInterface *rif = m_window->rendererInterface(); m_device = (id<MTLDevice>) rif->getResource(m_window, QSGRendererInterface::DeviceResource); Q_ASSERT(m_device); MTLTextureDescriptor *desc = [[MTLTextureDescriptor alloc] init]; desc.textureType = MTLTextureType2D; desc.pixelFormat = MTLPixelFormatRGBA8Unorm; desc.width = m_size.width(); desc.height = m_size.height(); desc.mipmapLevelCount = 1; desc.resourceOptions = MTLResourceStorageModePrivate; desc.storageMode = MTLStorageModePrivate; desc.usage = MTLTextureUsageShaderRead | MTLTextureUsageRenderTarget; m_texture = [m_device newTextureWithDescriptor: desc]; [desc release]; QSGTexture *wrapper = QNativeInterface::QSGMetalTexture::fromNative(m_texture, m_window, m_size); qDebug() << "Got QSGTexture wrapper" << wrapper << "for an MTLTexture of size" << m_size; setTexture(wrapper); } m_t = float(static_cast<CustomTextureItem *>(m_item)->t());
在复制所需值之后,sync() 还会执行一些图形资源初始化。从场景图中查询 MTLDevice。一旦有了 MTLTexture,就会通过 QNativeInterface::QSGOpenGLTexture::fromNative() 创建一个包装(非拥有权)它的 QSGTexture。最后,通过调用基类的 setTexture() 函数将 QSGTexture 与底层材料相关联。
void CustomTextureNode::render() { if (!m_initialized) return; // Render to m_texture. MTLRenderPassDescriptor *renderpassdesc = [MTLRenderPassDescriptor renderPassDescriptor]; MTLClearColor c = MTLClearColorMake(0, 0, 0, 1); renderpassdesc.colorAttachments[0].loadAction = MTLLoadActionClear; renderpassdesc.colorAttachments[0].storeAction = MTLStoreActionStore; renderpassdesc.colorAttachments[0].clearColor = c; renderpassdesc.colorAttachments[0].texture = m_texture; QSGRendererInterface *rif = m_window->rendererInterface(); id<MTLCommandBuffer> cb = (id<MTLCommandBuffer>) rif->getResource(m_window, QSGRendererInterface::CommandListResource); Q_ASSERT(cb); id<MTLRenderCommandEncoder> encoder = [cb renderCommandEncoderWithDescriptor: renderpassdesc]; const QQuickWindow::GraphicsStateInfo &stateInfo(m_window->graphicsStateInfo()); void *p = [m_ubuf[stateInfo.currentFrameSlot] contents]; memcpy(p, &m_t, 4); MTLViewport vp; vp.originX = 0; vp.originY = 0; vp.width = m_size.width(); vp.height = m_size.height(); vp.znear = 0; vp.zfar = 1; [encoder setViewport: vp]; [encoder setFragmentBuffer: m_ubuf[stateInfo.currentFrameSlot] offset: 0 atIndex: 0]; [encoder setVertexBuffer: m_vbuf offset: 0 atIndex: 1]; [encoder setRenderPipelineState: m_pipeline]; [encoder drawPrimitives: MTLPrimitiveTypeTriangleStrip vertexStart: 0 vertexCount: 4 instanceCount: 1 baseInstance: 0]; [encoder endEncoding]; }
连接到 beforeRendering() 的 render() 调用使用在 sync() 中创建的缓冲区和管道状态对象编码渲染命令。
© 2024 Qt公司有限公司。本文件中的文档贡献均为各自所有者的版权。提供的文档根据自由软件基金会的出版和GNU自由文档许可证(版本1.3)的条款进行许可,请访问GNU自由文档许可证版本1.3。Qt及其相应标识均为芬兰和/或其他国家的Qt公司有限公司的商标。商标。所有其他商标均为各自所有者的财产。